2023年最“炫”的六大分子

支持任意国家,定制相应运营商的4G/5G通信的伪基站设备。 点击下方联系咨询
点我联系TG:@smstexb
点我联系TG:@smstexb
Telegram
点我联系WhatsApp: +852 94748751

[field:title/]

2024年新版Lte4G/5G伪基站,真正的4G/5G伪基站设备【官方厂家】

针对附近人,强发短信,短信不会被拦截
无需sim卡、无任何短信费用
内容可任意,无任何限制。
显示号码:10086、Bank等英文字母,随意配置。
支持4G+5G网络下,强制发送短信到设备周围智能手机。

Skype: smszmk@hotmail.com
 

研发中心:中国香港市科技大道西1号
 

售中:(1)提供伪基站设备相关图片以及技术资料。

            (2)连接设备并告知客户设备连接方法以及配置参数。

            (3)按时按量完成伪基站安装调试,及时处理突发事件,保持和客户沟通。

售后:(1)有专业技术人员负责伪基站调试,并负责培训客户如何操作4G伪基站以及维护技能。

            (2)长期低价提供优质伪基站产品配件。

            (3)伪基站设备保修期3年,因设备质量造成设备损坏,我们免费负责维修,如果是因为人员操作不当造成的设备损坏,我们会在收到消息48小时内,远程或到场维修并给出处理意见。
 

✅适用于各种商业广告:

-新推出楼盘,推广和销售新推出的物业,正在开发的楼盘和房屋。针对特定区域的潜在客户
-在线赌场,推广和吸引客户加入在线赌场游戏、在线娱乐、老虎机游戏、扑克、真人娱乐场等
-私人贷款,针对金融问题客户,金融问题客户,提供快速现金,快速贷款,即时贷款,私人贷款,许可贷款,金融贷款业务。
-酒店和SPA,推广酒店客房。酒店品牌。酒店水疗营销。
-餐厅和酒吧,夜总会,推广餐厅和酒吧菜单。商业品牌推广、餐饮营销、夜总会开幕式、品牌推广等
-购物中心,发送问候消息,基于位置的问候短信。
-政治家竞选营销、选举竞选营销、选举调查表。
-预警警报系统,灾害警报,紧急警报,海啸警报短信【政府预警系统】
 

原标题:2023年最“炫”的六大分子

近日,美国化学会旗下C&EN杂志公布了2023年最“炫”的分子榜单。尽管这些分子很小,但其能量却很大,有些甚至可能改写教科书。

由茂金属弯曲而成的环茂烯

日本冲绳科学技术研究所与德国和俄罗斯的科学家携手,通过将18个茂金属单元弯曲成一个纳米级的环,制成了一种新型的超大夹层复合物环烯。他们将金属锶、钐或铕等夹在环辛四烯层之间,庞大的三异丙基甲硅烷取代基迫使茂金属在堆叠时弯曲成环,制成了这些环烯。

茂金属是一种有机金属化合物,以其多功能性和特殊的“三明治”结构而闻名。科学家对金属有机化合物化学性质的开创性研究曾赢得1973年诺贝尔化学奖。

这一成果今年8月刊发于《自然》杂志。研究团队指出,这个环状“三明治”化合物的诞生为进一步创新功能有机金属材料打开了大门,这些材料可广泛应用于医学和新能源领域。

打破八电子规则的碳烯

根据所谓的八电子规则,碳通常有8个价电子,但科学家制造出了一种新化合物:结晶双氧化碳烯,其碳原子只有4个价电子。相关研究成果发表于9月20日出版的《自然》杂志。

在这项研究中,美国加州大学圣迭戈分校盖·伯特兰德团队创造出了一个带有庞大取代基的碳烯,随后将其氧化,接着移除了一个氧化物阴离子,留下没有非键合电子的碳烯。碳烯现在是化学中强有力的工具,在材料和医学科学中也有广泛应用。

创建共价有机框架的索烃

由美国加州大学伯克利分校教授奥尔玛·亚吉领导的团队,使用索烃这种像围栏链条一样互锁的分子,制造出了一种新型共价有机框架。其中每个亚单位都是围绕铜离子缩合前体而形成的三环多面体网络,移除铜模板离子使多面体能够移动而不分离,从而使所得材料柔软且富有弹性,可用于制造过滤膜和柔性机器人等。

相关研究成果发表于今年1月出版的《自然·合成》杂志。

稳定的手性氧鎓离子

提起手性,碳通常会从人们的脑海中浮现出来,但其他原子也可形成手性中心。

英国牛津大学和美国科罗拉多州立大学联合研究团队3月在《自然》杂志发表论文称,他们合成出了一种稳定的氧鎓离子。其中1个氧原子与另外3个原子相连,而且氧原子是唯一的手性中心。实验证明,该化合物是目前所知唯一一种构型稳定且氧原子作为唯一手性中心的化合物,填补了氧原子立体化学研究领域的空白,是分子手性领域的一大基础性突破。

这些结果可拓宽科学家对氧鎓离子的了解,为其未来在有机合成工作中的运用开辟新途径。由于手性在催化、医学和材料中的重要性,未来研究人员将继续探索手性含氧原子化合物的性质。

安全键合的固态双铍化合物

铍是一种坚固且轻质的碱性稀土金属,被广泛应用于从电信设备到电脑、手机等诸多领域。它还与其他金属混合,被制成合金,用于制造陀螺仪和电触点等。

科学家认为,如果能将两个铍原子相互结合,得到的化合物会很有用。在一项最新研究中,英国牛津大学化学家首次实现了让两个铍原子在室温下安全地键合在一起,创造出了双铍烯,这是首个含有铍—铍键的固态化合物。相关研究论文发表于6月出版的《科学》杂志。

研究团队指出,此前无法成功让两个铍原子结合的原因之一在于其毒性。但他们发现,遵循一定规则就能以安全方式进行合成,而且数学模型显示,所得化合物很稳定。

由电驱动的分子马达

现今大多数分子马达由化学燃料或光驱动,但来自美国西北大学、加州理工学院、缅因大学的联合研究团队历时4年,设计并合成了一种基于索烃的电动分子马达。在溶液中,索烃两个较小环可沿较大的环进行电驱动单向旋转运动,整个过程不产生废弃物。

研究团队指出,用电作为动力源可以使分子马达更容易整合入其他技术当中。相关论文发表于今年1月出版的《自然》杂志。

研究人员表示,他们把分子纳米技术提升到了一个新高度,使用电子有效驱动分子马达,就像宏观世界里的电动马达一样。虽然这一化学领域还处于起步阶段,但未来这些微型马达有望给医学领域带来巨大变化。



上一篇:新策略揭示量子退相干复杂性

下一篇:推动长三角成区域发展共同体